Hydrocarbon lakes on Titan
نویسندگان
چکیده
The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50%) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765–778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779–784], suggesting sources of methane that replenish this gas against photoand charged-particle chemical loss on short (10–100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724–727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970–974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. In this paper we explore the hypothesis that the present-day methane relative humidity is maintained entirely by lakes that cover a small part of the surface area of Titan. We calculate the required minimum surface area coverage of such lakes, assess the stabilizing influence of ethane, and the implications for moist convection in the atmosphere. We show that, under Titan’s surface conditions, methane evaporates rapidly enough that shorelines of any existing lakes could potentially migrate by several hundred m to tens of km per year, rates that could be detected by the Cassini orbiter. We furthermore show that the high relative humidity of methane in Titan’s lower atmosphere could be maintained by evaporation from lakes covering only 0.002–0.02 of the whole surface. Published by Elsevier Inc.
منابع مشابه
Optical reflectivity of solid and liquid methane: Application to spectroscopy of Titan's hydrocarbon lakes
[1] Reflectance spectroscopy of outer solar system bodies provides direct observations for interpreting their surface compositions. At Titan, the Cassini spacecraft revealed dark patches in the surface reflectance at 2 and 5 mm, interpreted as hydrocarbon lakes forming seasonally through a methane cycle. Whereas the composition of planetary materials in the solar system has been inferred from c...
متن کاملComparison of Titan’s north polar lakes with terrestrial analogs
[1] The discovery of hydrocarbon lakes in the polar regions of Titan offers a unique opportunity to compare terrestrial lakes with those in an extraterrestrial setting. We selected 114 terrestrial lakes formed by different processes as analogs for comparison with the 190 Titanian lakes that we had mapped in our previous study. Using the Shuttle Radar Topography Mission (SRTM) C-band backscatter...
متن کاملDiscovery of Lake-effect clouds on Titan
Images from instruments on Cassini as well as from telescopes on the ground reveal the presence of sporadic small-scale cloud activity in the cold late-winter north polar of Saturn’s large moon Titan. These clouds lie underneath the previously discovered uniform polar cloud attributed to a quiescent ethane cloud at ~40 km and appear confined to the same latitudes as those of the largest known h...
متن کاملHydrocarbons Lakes on Titan
Introduction: Titan has a massive atmosphere with a pressure at surface level of ~1.5 bars. In the atmosphere the molecular nitrogen N2 is the dominant constituent (~94 percent) and the methane CH4 is the second most abundant component (~5 percent) [1]. The atmosphere of Titan is photochemically active with an efficient production of ethane, ethylene, acetylene and propane as minor components. ...
متن کاملNear Infrared Spectroscopy of Liquid Hydrocarbon Mixtures : Application for In - Situ
Introduction: The presence of ethane in liquidfilled lakes on Titan was confirmed by the Cassini Visible and Infrared Mapping Spectrometer (VIMS) in 2008, and has been investigated in further detail by the Cassini radar instrument [1,2]. Radar sounding, infrared absorption, and modeling suggest that the lakes are predominantly liquid methane and ethane, with trace amounts of propane, butane, ot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007